matlab实现通过SIR模型估算冠状病毒COVID-19流行病评估【含源码和数据来源】

fitVirusCOVID19

函数fitVirusCV19实现了易感性感染去除(SIR)流行病模型,用于评估流行病评估。假定该模型是对一阶段流行病的合理描述。特别是,该模型假设人口恒定,人员混合均匀以及被感染者的转移可能性相同。该模型是数据驱动的,因此其预测与数据一样好。具有新数据或更改数据的预测更改。官方宣布的疫情暴发与该计划所报告的疫情暴发之间没有任何关系。当数据足以计算初始近似值时,程序将指示开始日期。

对于那些不熟悉流行病模型的人,我们建议以下文章:https : //en.wikipedia.org/wiki/Compartmental_models_in_epidemiolog,http :
//www.maths.usyd.edu.au/u/marym/populations/ hethcote.pdfhttps://web.stanford.edu/~jhj1/teachingdocs/Jones-on-R0.pdf

通过最小化目标函数获得模型的参数,该目标函数是值残差的平方和和值差残差的平方和。自动选择相加权重。优化工具箱功能fminsearch用于计算未知模型参数的最优值。如果计算失败,则仅绘制数据。

该贡献包含阿根廷,奥地利,比利时,巴西,加拿大,克罗地亚,中国,捷克共和国,丹麦,德国,匈牙利,法国,冰岛,印度,印度尼西亚,伊朗,意大利,日本,荷兰,挪威,波兰,葡萄牙,罗马尼亚,俄罗斯,斯洛伐克,塞尔维亚,斯洛文尼亚,韩国,西班牙,瑞士,土耳其,英国,美国和世界(截至2020年4月28日)

在流行病评估图上,区域为单独的流行病阶段着色(这些不是标准的,而是为方便起见随意选择):
红色-快速生长阶段
黄色-过渡到稳态阶段
绿色-结束阶段(高原阶段)

在总案例图中,边距为+/- 3 * RMSE;在每日新病例图中,边距为+ / dRMSE。

在“每日病例生长因子”图上,仅出于定位原因而显示了两条线1%(绿色)和5%(红色)。

结果保存在结构体res中(请参见功能fiVirusCV19标头)。可选地,结果可以通过以下方式打印

fitVirusCV19(@ getDataXXX,'prn','on')

其中XXX代表国家/地区名称。如果回归失败,则仅绘制数据。人口规模限制为12Mio。您可以按名称/值对更改上限:

fitVirusCV19(@ getDataXXX,'nmax',nmax)

如果最终预测值过高或超过该国人口,请使用此选项。

要从图形上的图形中排除增长率,请使用(def值为3)

fitVirusCV19(@ getDataXXX,'nsp',2)

功能analyseCV绘制了一个评估接触数(sigma),Cend(流行病大小),N(初始易感种群大小)的图表。开始使用流行病10天后分析XXX国家/地区的数据

analyseCV19(@ getDataXXX,10)

获取代码和数据来源

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页