求解 偏微分方程(PDEs)

偏微分方程是一个方程,它包含一个未知函数对两个或多个自变量的导数

偏微分方程描述了许多工程现象的行为:

–波传播

–流体流动(空气或液体)

机翼周围的空气,直升机叶片,大气

管道或多孔介质中的水

物质在空气或水中的传输和扩散

天气:动力耦合的大型PDE系统,

压力、湿度、热量…

–振动

–固体力学:

材料、机械零件、结构的应力应变

–热流和分配

–电场和电位

–化学品在空气或水中的扩散

–电磁学和量子力学

天气预报

•热传输和冷却

•水分平流和弥散

•辐射和太阳能加热

•蒸发

•空气(运动、摩擦、动量、科里奥利力)

•表面传热

要预测天气,只需要解一个非常大的系统

动量、压力、湿度、热量的耦合偏微分方程,

等。

学习目标

1) 能够区分三类二阶线性

PDE。了解每个类代表的物理问题,以及

它们的物理/数学特性。

2) 能够描述有限差分与

求解偏微分方程的有限元方法。

3) 能够用有限元法求解椭圆(拉普拉斯/泊松)偏微分方程

差异。

4) 能够用有限元方法求解抛物线(热/扩散)偏微分方程

差异。

完整资料获取

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页